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Abstract.

Globally convergent nonlinear relaxation methods are considered for a class of nonlinear boundary
value problems (BVPs), where the discretizations are continuous M-functions.

It is shown that the equations with one variable occurring in the nonlinear relaxation methods
can always be solved by Newton’s method combined with the Bisection method. The nonlinear
relaxation methods are used to get an initial approximation in the domain of attraction of
Newton’s method. Numerical examples are given.

1980 Mathematics subject classification: 65 H 10, 65N 10.
Keywords and Phrases: nonlinear relaxation methods, Newton-Bisection method, M-functions.

1. Introduction.

In section 2 we introduce nonlinear singularly perturbed elliptic BVP in
2 dimensions, where the discretizations with the first order Osher-Engquist
scheme (cf. [5]) are continuous M-functions. The solutions of the discrete equa-
tions are unique, and with the theory of M-functions it follows that the non-
linear Jacobi (NLJAC) and the nonlinear SOR (NLSOR) process are globally
convergent (cf. [4]).

In section 3 we show that the equations with one variable occurring in NLJAC
and NLSOR can always be solved by Newton’s method combined with the
bisection method. We will give a 2-D example with an initial approximation
for which NLJAC with Newton’s method (NLJAC-N) does not converge, whereas
NLJAC with Newton’s method combined with bisection (NLJAC-NB) does.

In section 4 we use NLSOR-NB to get an initial approximation in the
domain of attraction of Newton’s method for the whole system of equations
(NEWT).

2. A class of nonlinear BVPs.

We consider the following class of nonlinear BVPs in two dimensions:
@.1)  Nau= —,0%u/0x® —,0°u/0y* + a, (u)du/0x + a, (u)du/dy + g(u, x, y)
=0,0n 2= {(x,y)0 <x<1,0<y<1},and
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(22)  u(x,y)=b(x,y) ondéQ= Q\Q, with & = (¢;,¢,),  &,¢ > 0;
a;,0,€C'(R),  geC*RxQ), (8/ou)g(u, x, NZ2pu>0 for all (x, y)eQ,

ue C*(Q) and be C(6Q).

.For‘the discretization of this problem we introduce G,, a uniform rectangular
grid Tmth mesh-size h = (hy, h,), h, = 1/m, h, = 1/n and meshpoints x}; = (ihy, jh,),
0=i=m0= ;= n and use the one sided Osher-Engquist difference scheme (cf.

[5D):

(23) (Ne, huh)ij = “31’71_2(“?4- 1j“2u?j+“?—1j)"£zhz_2(“g+1 “2u?j+“5}~1)
+ hl. 1(Axfl ‘(u?j)+ ijl * (u:‘_y))
+h; I(Ayf2‘(u?j)+vyf2*(u’i‘j))+g(u?ja x’i’j)

= 0 for all x};eG, N Q,

(24) (N, u"); = ul; = b(xh) for all xl,e G, N 3Q, where for m = 1,2:

u?‘, u?’.
h .
fm*(uij) = J‘ maX(O, am(s))dsa fm‘(ug') = j mln(oa a,,,(s))ds,
h _ .k h
Axuij = Uiy 1 Uijs qu?j = u?j-u?—lj’
ho_ . h h
Ay = ul; —up, Vb, = ulfi—uly_ .

Denoting the space of gridfunctions on G, with GF,, and extending the
results of Lorentz (cf. [3]) to 2 dimensions, we can easily prove that N, , is a
continuous M-function from GF, onto GF,.

In the following section we use the property that M-functions are strictly
diagonally isotone (cf. [4]).

3. The nonlinear relaxation methods.

In this section we consider NLJAC and NLSOR, and give a 2-D example for
which NLJAC does not converge when the resulting scalar nonlinear equations
are solved with Newton’s method only, while NLJAC converges when we use
Newton’s method combined with bisection.

Let F(x) =0 with F = (f;(x),..., f,(x)), x = (x;,...x,) be a system of n
nonlinear equations. Let x'® be an initial approximation to the solution, then
x®*+1 is obtained by solving for x; the ith equation:
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G fix®, o x® L x, x® L x®) =0 for NLJAC, or

(32) fix D, XD x, x® L x®) =0 for NLSOR, and setting

(3.3) x¥*D = x4 p(x,—x¥), we(0,1], i=12,...,n

For our class of equations F is a continuous M-function, and both NLJAC
and NLSOR converge globally to the unique solution of (2.3), (2.4), provided
the (generally nonlinear) equations (3.1), (3.2) for which a unique solution exists
can be solved (cf. [4], Theorem 13.5.9).

For M-functions df;/dx; > 0. This implies that for a positive (negative)
function value of an iterant x;,, the next Newton iterant x,,, ,, is always smaller
(greater) than x;,, and we can start with only a single initial approximation.
When the function values of the subsequent iterants never change sign only
Newton iteration is applied, and we have monotone convergence. However if the
function value of an iterant x;,, changes sign we have an interval round the
solution: I, = (min(x;,_ ), X;,), Max(X,, - 1), X,)- This interval is adapted in
each iteration step. If I, ., = I;,,, Newton’s method is applied, if this is not the
case one step of the bisection method is applied.

As the bisection method always converges the above-mentioned combination
always converges.

This process is described in the following Algol-like procedure NEWTON
BISECTION. The procedure takes the current value of x as an initial value
and delivers in x an approximate solution to f(x) = 0, so that |f(x)| < tol.

(3.4) comment f is the function whose zero should be determined,
df the derivative (df > 0) and rol a given tolerance;
procedure newton_bisection:
begin integer sgn = sign(f(x)); real xold, xnew, xneg, xpos;
Xnew := X;
while abs (f(xnew)) > 1ol and sign(f{xnew)) = sgn
do xold : = xnew; xnew : = xold—f{xold)/df(xold) od;
if sign( /(xnew)) > O then xpos := xnew; xneg : = xold
else xneg : = xnew; xpos := xold fi;
xold 1= xnew;
while abs(f{xnew)) > tol
do while abs(xnew — xold) < xpos—xneg and abs(f{xnew)) > tol
do if sign(f{xnew)) > O then xpos := xnew; else xneg : = xnew fi;
xold 1= xnew; xnew := xold—f(xold)/df(xold) od,
if abs(f{xnew)) > tol then xnew := (xneg+ xpos)*0.5 fi od;
1= xnew
end
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Both NLJAC-NB and NLSOR-NB converge to the solution and in the
course of these processes in each point we will have a better initial dpproximation
‘for the Newton-Bisection process. This means that for a given tolerance TOL
in the course of the NLJAC-NB and NLSOR-NB process the required number
9f Newt(?n-Bisection iteration steps decreases (cf. Table 1, 2, 3). This phenomenon
is used in section 4, where NLJAC-NB and NLSOR-NB are used to get an
initial approximation for Newton’s method.

In example (3.5) NLJAC-N does not converge, whereas NLJAC-NB does.

(3.5) ExAMPLE.

We consider (2.1)-(2.4) with ¢, = ¢, = 1075, h, = h, = 1/32, a,(u) = a,(u) =
= arctan(4u), g(u, x, y) = u and b defined by

b(0,y) =0 0=y=s1 ,
b(l,y) = -1 0=Sy=<1-1073,
b(l,y) = 10°y—103 1-107* 2 y=1 ,
b(x,0) = —1 10732x =1 ,
b(x,0) = —10%x 0=x=10"3% |
b(x,1) =0 0=x=1

For the gridfunction u* in (2.3), (24) we take the lexicographical ordering
(ie.u' = (., uljuli, .. ul, ,ul, ;1)) As initial approximation for NLJAC-N
(v =1) and NLJAC-NB (w = 1) we take the gridfunction u® defined by
u) = —1on G, nQand u)) =b on G, N Q.

NLJAC-N does not converge, while we need k = 4 NLJIAC-NB steps to obtain
IN, u®| < 1072 with ||- || the maximum norm.

For NLJAC-NB in Table 1 we give the maximum number of Newton-
Bisection iterations for TOL = 1078 (cf. (3.4)).

Table 1. The maximum number of Newton-Bisection iterations per NLJAC-NB
iteration step i. (TOL= 10"8).

4. NLJAC-NB and NLSOR-NB combined with NEWT.

In this section we use NLJAC-NB and NLSOR-NB to get an initial approxi-
mation within the domain of attraction of NEWT.

There are other methods which use time-steps combined with NEWT (cf. [1])-
We consider here NLJAC-NB and NLSOR-NB because these can be used as
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relaxation processes in Multigrid methods (cf. [6]). Moreover the number
of Newton-Bisection steps can be used as a criterion to switch from NLJAC-NB
or NLSOR-NB to NEWT, as the number of Newton-Bisection iterations
decreases in the course of these processes.

So instead of trying NEWT after each NLJAC-NB or NLSOR-NB iteration
step we try it when the maximum number of Newton-Bisection iterations is
sufficiently small.

In the following 1-D example we have an initial approximation for which
NEWT does not converge while NLJAC-NB and NLSOR-NB do.

We also show that the combination NLSOR-NB with NEWT is cheaper than
NLSOR-NB alone.

(4.1) EXAMPLE.
Consider the 1-D problem

(42) Nu= —e'+u*—1/4w'+u=0  on[0,1] with ¢ = 1076,

u(0) = 1, u(l) = —1, discretized by the Osher-Engquist scheme (cf. (2.3), (2.4))
on a uniform grid with mesh size 1/20 (cf. [1], [2]).

NEWT with initial approximation u‘” defined by u{” = 1-2x, j=0,..,20,
does not converge while NLJAC-NB and NLSOR-NB (v = 1) do. We need
k = 58 NLJAC-NB or k = 39 NLSOR-NB steps for ||N, ,u®| < 1076, with ||.||
the maximum norm.

For NLJAC-NB and NLSOR-NB respectively in Table 2 and Table 3 we give
the maximum number of Newton-Bisection iterations with TOL = 1078 (cf. (3.4)).

Table 2. The maximum number of Newton-Bisection iterations N per NLJAC-NB
iteration step i. (TOL= 10"8).

i 1 2 3-5 6 7-8 9-17 18-38 39-58
N 7 6 4 5 4 3 2 1

Table 3. The maximum number of Newton-Bisection iterations N per NLSOR-NB
iteration step i. (TOL= 10"8).

i 1 2-3 4-5 6 7 8 9-12 13-20 21-29 30-39
N 7 5 4 5 4 3 4 3 2 1

When we try NEWT after the maximum number of Newton-Bisection iterations
in NLSOR-NB becomes 2, we need 21 NLSOR-NB steps and 2 NEWT steps
for |IN,, ull = 1075, with ||.|| the maximum norm.

An operations and function evaluations count shows that for 1 NEWT step
the number of operations and function evaluations per gridpoint is less than
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for 2 NLSOR-NB steps, with one or more Newton-Bisection iterations per grid-

point. Hence for this example the combination NLSOR-NB and NEWT is more
than 359 cheaper than NLSOR-NB solely.

5. Conclusions.

For continuous M-functions the equations with one variable occurring in the
globally convergent nomnlinear relaxation methods NLJAC and NLSOR can
always be solved by Newton’s method combined with the Bisection method,

and we need only a single initial approximation. Newton’s method alone is not
always sufficient.

The nonlinear relaxation methods can be used to get an initial approximation
for Newton’s method for the whole system of equations, where the decreasing
number of Newton-Bisection iterations can be used as switching criterion.
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